long K
number of classes for the workspace 
double * H
Huber weighted error matrix. 
double * LZ
n x (m+1) working matrix for the Z'*A*Z calculation 
double gamma
kernel parameter for RBF, poly, and sigmoid 
double epsilon
stopping criterion for the IM algorithm. 
double training_error
loss function value after training has finished 
long m
number of features for the workspace 
double p
parameter for the L-p norm in the loss function 
double * UU
simplex difference matrix 
double * ZV
n x (K-1) working matrix for the Z * V calculation 
double degree
kernel parameter for poly 
void gensvm_free_work(struct GenWork *work)
Free an allocated GenWork instance. 
A structure to hold the GenSVM workspace. 
void gensvm_free_model(struct GenModel *model)
Free allocated GenModel struct. 
int status
status of the model after training 
double * ZBc
(K-1) x (m+1) working matrix for the Z'*B calculation 
Header file for gensvm_sparse.c. 
int weight_idx
which weights to use (1 = unit, 2 = group) 
struct GenWork * gensvm_init_work(struct GenModel *model)
Initialize the workspace structure. 
double * V
augmented weight matrix 
double * ZAZ
(m+1) x (m+1) working matrix for the Z'*A*Z calculation 
long * y
array of class labels, 1..K 
struct GenModel * gensvm_init_model(void)
Initialize a GenModel structure. 
A structure to represent the data. 
A structure to represent a single GenSVM model. 
void gensvm_reset_work(struct GenWork *work)
Reset all matrices of a GenWork instance. 
double * ZB
(m+1) x (K-1) working matrix for the Z'*B calculation 
double * tmpZAZ
(m+1) x (m+1) temporary working matrix for the Z'*A*Z calculation 
double * Sigma
eigenvalues from the reduced eigendecomposition 
char * data_file
filename of the data 
long n
number of instances in the dataset 
long max_iter
maximum number of iterations of the algorithm 
void gensvm_free_data(struct GenData *data)
Free allocated GenData struct. 
double * rho
vector of instance weights 
long elapsed_iter
number of elapsed iterations in training 
void gensvm_allocate_model(struct GenModel *model)
Allocate memory for a GenModel. 
long r
number of eigenvalues (width of Z) 
double kappa
parameter for the Huber hinge function 
long K
number of classes in the dataset 
double degree
kernel parameter for poly 
long m
number of predictors (width of RAW) 
KernelType
type of kernel used in training 
double coef
kernel parameter for poly and sigmoid 
KernelType kerneltype
type of kernel used in the model 
double gamma
kernel parameter for RBF, poly, and sigmoid 
double coef
kernel parameter for poly and sigmoid 
void gensvm_reallocate_model(struct GenModel *model, long n, long m)
Reallocate memory for GenModel. 
long n
number of instances 
struct GenData * gensvm_init_data(void)
Initialize a GenData structure. 
long n
number of instances for the workspace 
long m
number of predictor variables in the dataset 
double * RAW
augmented raw data matrix 
double kernel_eigen_cutoff
cutoff value for the ratio of eigenvalues in the reduced 
struct GenSparse * spZ
sparse representation of the augmented data matrix 
double * beta
K-1 working vector for a row of the B matrix. 
double lambda
regularization parameter in the loss function 
A structure to represent a sparse matrix in CSR format.